International Journal of Applied Science and Engineering
Published by Chaoyang University of Technology

Siva Govindasamya, Bharathikannan Rajakannua*, Mohanbabu Bharathib, Tamiloli Devendhiranc and Mei-Ching Linc

aDepartment of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Tamil Nadu, India
bDepartment of Physics, Sri Shakthi Institute of Engineering and Technology, Tamil Nadu, India
cDepartment of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, R.O.C.


 

Download Citation: |
Download PDF


ABSTRACT


A single crystal of charge-transfer 3,5-dimethylpyrazole benzilic acid (DMPBA) was grown at room temperature by using a slow evaporation solution growth technique. The grown crystal belonged to the monoclinic system with the space group of P21/n. Different spectroscopic and analytical techniques were used for analyzing the structure and properties of the grown crystal, such as Fourier transform infra-red, UV-Vis, 1H and 13C nuclear magnetic resonance. The mechanical strength of the crystal has been studied by using a Vickers’ micro-hardness test. The stiffness constant and yield strength of the crystal were also calculated from the micro-hardness test and Z-scan studies. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analysis and was found to be stable up to 187.6oC. In addition, the newly synthesized DMPBA compound was tested for deoxyribonucleic acid (DNA) binding, and in vitro-antimicrobial activity against various bacterial and fungal species. Also, the compound showed the moderate capacity of scavenging with 2,2-diphenyl-1-picrylhydrazyl (DPPH).


Keywords: 3,5-dimethylpyrazole benzilic acid crystal; photophysical properties; Z-scan; biological activity.


Share this article with your colleagues

 


REFERENCES


  1. [1] Notake, T., Takeda, M., Okada, S., Hosobata, T., Yamagata, Y. and Minamide, H. 2019. Characterization of all second-order nonlinear-optical coefficients of organic N-benzyl-2-methyl-4-nitroaniline crystal. Scientific reports, 9:1–8. [Publisher Site]

  2. [2] Khan, I. M., Ahmad, A. and Oves, M. 2010. Synthesis, characterization, spectro-photometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with π acceptor picric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77:1059–1064. [Publisher Site]

  3. [3] Siva, G., Bharathikannan, R. and Mohanbabu, B. 2016. Growth and characterization of organic nonlinear optical material: acenaphthene DL-malic acid (ADLMA). Journal of Optoelectronics and Advanced Materials, 18:89–95.

  4. [4] Selvakumar, E., Ramasamy, P., Murugesan, V. and Chandramohan, A. 2014. Synthesis, growth and spectroscopic investigation of an organic molecular charge transfer crystal: 8-Hydroxy quinolinium 4-nitrobenzoate 4-nitrobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117: 259–263. [Publisher Site]

  5. [5] Murugesan, V., Saravanabhavan, M. and Sekar, M. 2015. Synthesis, spectroscopic characterization and structural investigation of a new charge transfer complex of 2, 6-diaminopyridine with 4-nitrophenylacetic acid: Antimicrobial, DNA binding/cleavage and antioxidant studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147: 99–106. [Publisher Site]

  6. [6] Thirupugalmani, K., Venkatesh, M., Karthick, S., Maurya, K. K., Vijayan, N., Chaudhary, A. K. and Brahadeeswaran, S. 2017. Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation. Crystal Engineering Communication, 19: 2623–2631. [Publisher Site]

  7. [7] Vinoth, E., Vetrivel, S., Gopinath, S., Aruljothi, R., Suresh, T. and Mullai, R. U. 2019. A new class semi-organic nonlinear optical material: Mono (4-sulfo benzene aminium) tri nickel (II) bis (dihydrogen phosphate) for photonic applications.Materials Science for Energy Technologies, 2: 234–245. [Publisher Site]

  8. [8] Mohanbabu, B., Bharathikannan, R., Siva, G. 2017. Structural, optical, dielectric, mechanical and Z-scan NLO studies of charge transfer complex crystal: 3-aminopyridinum-4-hydroxy benzoate. Journal of Materials Science: Materials in Electronics, 28:1–10. [Publisher Site]

  9. [9] Evans, O. R. and Lin, W. 2002. Crystal engineering of NLO materials based on metal-organic coordination networks. Accounts of Chemical Research, 35:511–522. [Publisher Site]

  10. [10] Van der Vaart, A. and Merz Jr, K. M. 2002. Charge transfer in small hydrogen bonded clusters. The Journal of Chemical Physics, 116:7380–7388. [Publisher Site]

  11. [11] Thomas, R., Pal, S., Datta, A., Marchewka, M. K., Ratajczak, H., Pati, S. K. and Kulkarni, G. U. 2008. Charge density analysis of two proton transfer complexes: Understanding hydrogen bonding and determination of in-crystal dipole moments. Journal of Chemical Sciences, 120:613–620. [Publisher Site]

  12. [12] Babu, B., Chandrasekaran, J., Thirumurugan, R., Jayaramakrishnan, V. and Anitha, K., 2017. Experimental and theoretical investigation on 2-amino 5-bromopyridinium L-tartrate-A new organic charge-transfer crystal for optoelectronics device applications. Journal of Materials Science: Materials in Electronics, 28:1124–1135. [Publisher Site]

  13. [13] Prakash, M. J. and Radhakrishnan, T. P. 2005. SHG active salts of 4-nitrophenolate with H-bonded helical formations: Structure-directing role of ortho-aminopyridines. Crystal Growth & Design, 5:721–725. [Publisher Site]

  14. [14] Rohatgi Mukherjee, K. K. 1986. Fundamental of Photochemistry (revised ed.) New Age International, India, 22–25.

  15. [15] Miniewicz, A., Palewska, K., Sznitko, L. and Lipinski, J. 2011, Single-and Two-Photon Excited Fluorescence in Organic Nonlinear Optical Single Crystal 3-(1, 1-Dicyanoethenyl)-1-phenyl-4, 5-dihydro-1 H-pyrazole. The Journal of Physical Chemistry A, 115:10689–10697. [Publisher Site]

  16. [16] Kou, Z., Shen, J., Xu, E. and Li, S. 2013. Hybrid Coupled Cluster Methods Based on the Split Virtual Orbitals: Barrier Heights of Reactions and Spectroscopic Constants of Open-Shell Diatomic Molecules. The Journal of Physical Chemistry C, 117: 626–632. [Publisher Site]

  17. [17] Baraniraj, T. and Philominathan, P. 2009. Growth and characterization of organic nonlinear optical material: Benzilic acid. Journal of Crystal Growth, 311: 3849–3854. [Publisher Site]

  18. [18] Khan, I. M. and Ahmad, A. 2010. Synthesis, spectrophotometric, structural and thermal studies of the charge transfer complex of p-phenylenediamine, as an electron donor with π acceptor 3, 5-dinitrobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76:315–321. [Publisher Site]

  19. [19] Qiu, Y., Wang, K., Liu, Y., Deng, H., Sun, F., Cai, Y., 2007. Synthesis, characterization and 1D helical chain crystal structure of [Cu (DBA)2(1,10-phen)]n and [Cd (DBA)2 (1,10-phen)2](DBA= benzilic acid). Inorganica Chimica Acta, 360:1819–1824. [Publisher Site]

  20. [20] Ehlert, M. K., Rettig, S. J., Storr, A., Thompson, R. C., Trotter, J. and Zinc. 1990. 3,5-dimethylpyrazolate complexes: synthesis and structural studies. The crystal and molecular structure of [Zn2(dmpz)4 (Hdmpz)2]. Canadian Journal of Chemistry, 68:1494–1498. [Publisher Site]

  21. [21] Mohanbabu, B., Bharathikannan, R. and Siva, G. 2015. Synthesis, growth, Spectral, third order nonlinear optical and antimicrobial behaviour of 5-bromopyridine-4-hydroxybenzoic acid single crystals. Journal of Optoelectronics and Advanced Materials, 17:1603–1614.

  22. [22] Addla, D., Wen, S. Q., Gao, W. W., Maddili, S. K., Zhang, L. and Zhou, C. H. 2016. Design, synthesis, and biological evaluation of novel carbazole aminothiazoles as potential DNA-targeting antimicrobial agents. MedChemComm, 7:1988–1994. [Publisher Site]

  23. [23] Saravanabhavan, M., Sathya, K., Puranik, V. G. and Sekar, M. 2014. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118: 399–406. [Publisher Site]

  24. [24] Sheldrick, G. M. 1997. SHELXS-97, Program for the solution of crystal structures, University of Gottingen, Gottingen, Germany.

  25. [25] Sheldrick, G. M. 1990. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography, 46:467–473. [Publisher Site]

  26. [26] Cruickshank, R., Duguid, J. P., Marmion, B. P. and Awain, R. H. A. 1995. Medicinal Microbiology, 12 thed., 11, Churchill Livingstone, London, 196.

  27. [27] Collins, A. H. 1976. Microbiology Method, 2nd ed. Butterworth, London.

  28. [28] Kunchandy, E. and Rao, M. N. A. 1990. Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58:237–240. [Publisher Site]

  29. [29] Carvalho, C. C., Camargo, A. J., Teijido, M. V., Isolani, P. C., Vicentini, G. and Zukerman-Schpector, J. 2003. Structure characterization of molecular complexes for non-linear optical materials I. X-ray analysis and AM1 calculations of 1:1 complexes of 8-hydroxiquinoline (1) and isonicotinamide (2) with 2,4,6-trinitrophenol. Zeitschrift für Kristallographie, 218:575–580. [Publisher Site]

  30. [30] Prakash, M., Geetha, D., Caroline, M. L. and Ramesh, P. S. 2011. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83: 461–466. [Publisher Site]

  31. [31] Janarthanan, S., Samuel, R. S., Selvakumar, S., Rajan, Y. C., Jayaraman, D. and Pandi, S. 2011. Growth and characterization of organic NLO crystal: β-naphthol. Journal of Materials Science & Technology, 27: 271–274. [Publisher Site]

  32. [32] Willard, H., Merritt, L. L., Dean, J. A. and Settle, F. A. 1986. Instrumental Methods of Analysis, Wadsworth publishing company, USA.

  33. [33] Hameed, A. H., Ravi, G., Dhanasekaran, R. and Ramasamy, P. 2000. Studies on organic indole-3-aldehyde single crystals. Journal of Crystal Growth, 212: 227–232. [Publisher Site]

  34. [34] Bamzai, K. K., Kotru, P. N. and Wanklyn, B. M. 1998. Investigations on indentation induced hardness and fracture mechanism in flux grown DyAlO3 crystals. Applied Surface Science, 133: 195–204. [Publisher Site]

  35. [35] Onitsch, E. M. 1947. Uber die mikrohärte der metalle. Microscopia, 2:131.

  36. [36] Hanneman, M. and Metall. 1941. Manch, 23:135–140.

  37. [37] Wooster, W. A. 1953. Physical properties and atomic arrangements in crystals. Reports on Progress in Physics, 16: 62. [Publisher Site]

  38. [38] Kowski, P. W., Kantorow, S. B., Mączka, D. and Stelmakh, V. F. 1989. Processes of Radiation Defect Interaction and Amorphisation of Silicon at Large Implantation Doses. Physica Status Solidi (a), 112: 695–698. [Publisher Site]

  39. [39] Balarew, C. and Duhlev, R. 1984. Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. Journal of Solid State Chemistry, 55: 1–6. [Publisher Site]

  40. [40] Sheik-Bahae, M., Said, A. A. and Van Stryland, E. W. 1989. High-sensitivity, single-beam n2 measurements. Optics Letters, 14: 955–957. [Publisher Site]

  41. [41] Sheik-Bahae, M., Said, A. A., Wei, T. H., Hagan, D. J. and Van Stryland, E. W. 1990. Sensitive measurement of optical nonlinearities using a single beam. IEEE Xplore: IEEE Journal of Quantum Electronics, 26: 760–769. [Publisher Site]

  42. [42] Gomez, S. L., Cuppo, F. L. S. and FigueiredoNeto, A. M. 2003. Nonlinear optical properties of liquid crystals probed by Z-scan technique. Brazilian Journal of Physics, 33: 813–820. [Publisher Site]

  43. [43] Sheik-Bahae, M., Hutchings, D. C., Hagan, D. J. and Van Stryland, E. W. 1991. Dispersion of bound electron nonlinear refraction in solids. IEEE Xplore: IEEE Journal of Quantum Electronics, 27: 1296–1309. [Publisher Site]

  44. [44] Rosenberg, B., Van Camp, L. and Krigas, T. 1965. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205: 698–699. [Publisher Site]

  45. [45] Wolfe, A., Shimer Jr, G. H. and Meehan, T. 1987. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 26: 6392–6396. [Publisher Site]

  46. [46] Nafisi, S., Saboury, A. A., Keramat, N., Neault, J. F. and Tajmir-Riahi, H. A. 2007. Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. Journal of Molecular Structure, 827: 35–43. [Publisher Site]

  47. [47] Cruickshank, R., Duguid, J. P., Marmion, B. P. and Awain, R. H. A. 1995. Medicinal Microbiology, 12, 11, Churchill Livingstone, London, 196.


ARTICLE INFORMATION


Received: 2019-04-24
Revised: 2020-02-24
Accepted: 2020-03-25
Available Online: 2020-06-01


Cite this article:

Govindasamy, S., Rajakannu, B., Bharathi, M., Devendhiran, T., Lin, M.C. 2020. Structural, optical, electrical and biological evaluation of a 3,5-dimethylpyrazole benzilic acid crystal. International Journal of Applied Science and Engineering, 17, 135–155. https://doi.org/10.6703/IJASE.202005_17(2).135